Interested in promotions? | Click here >>
69501
PhosphoPlus® Atg14 (Ser29) Antibody Duet
Primary Antibodies
Antibody Duet

PhosphoPlus® Atg14 (Ser29) Antibody Duet #69501

Reviews ()
Citations (0)

Confocal immunofluorescent analysis of HCT 116 Atg14 wild-type cells, untreated (left, low-expressing) or treated with Torin 1 #14379 (250 nM, 2 hr; middle-left, high-expressing), HCT 116/Atg14 shRNA knockout cells treated with Torin 1 (middle-right, negative), or HCT 116 Atg14 wild-type cells post-processed with λ-phosphatase (2 hr; right, negative), using Phospho-Atg14 (Ser29) (D4B8M) Rabbit mAb (green). Samples were mounted in ProLong® Gold Antifade Reagent with DAPI #8961 (blue). HCT 116/Atg14 shRNA knockout cells were kindly provided by Dr. Do-Hyung Kim, University of Minnesota, Minneapolis, MN.

Immunoprecipitation of Atg14 from HCT 116 cell extracts. Lane 1 is 10% input, lane 2 is precipitated with Rabbit (DA1E) mAb IgG XP® Isotype Control #3900, and lane 3 is Atg14 (D1A1N) Rabbit mAb. Western blot was performed using Atg14 (D1A1N) Rabbit mAb. A confirmation specific secondary antibody was used to avoid reactivity with IgG.

Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with constructs expressing GFP-tagged human Atg14 protein (hAtg14-GFP; +) or mouse ULK1 protein (mULK1; +), using Phospho-Atg14 (Ser29) (D4B8M) Rabbit mAb (upper), Atg14 (D1A1N) Rabbit mAb (middle), or β-Actin (D6A8) Rabbit mAb #8457 (lower).

Western blot analysis of extracts from HCT 116 and HCT 116/Atg14 shRNA knockout cells using Atg14 (D1A1N) Rabbit mAb (upper) and β-Actin (D6A8) Rabbit mAb #84576 (lower). HCT 116/Atg14 shRNA cells were kindly provided by Dr. Do-Hyung Kim, University of Minnesota, Minneapolis, MN.

Western blot analysis of extracts from HCT 116 and HCT 116/Atg14 shRNA knockout cells, untreated (-) or starved using Earle's Balanced Salt Solution (EBSS, 2 hr; +) and the ULK1 inhibitor SBI-0206965 #29089 (50 μM, 2 hr; +) as indicated, using Phospho-Atg14 (Ser29) (D4B8M) Rabbit mAb (upper), Atg14 (D1A1N) Rabbit mAb #96752 (middle), or β-Actin (D6A8) Rabbit mAb (lower). HCT 116/Atg14 shRNA knockout cells were kindly provided by Dr. Do-Hyung Kim, University of Minnesota, Minneapolis, MN.

Western blot analysis of extracts from various cell lines using Atg14 (D1A1N) Rabbit mAb.

Western blot analysis of extracts from HCT 116 cells, untreated (-) or treated with lambda-phosphatase and calf intestinal phosphatase (λ-phosphatase/CIP; +), using Phospho-Atg14 (Ser29) (D4B8M) Rabbit mAb (upper), Atg14 (D1A1N) Rabbit mAb #96752 (middle), and β-Actin (D6A8) Rabbit mAb #8457 (lower).

Western blot analysis of extracts from Saos-2 cells, untreated (-) or starved using Earle's Balanced Salt Solution (EBSS, 2 hr), using Phospho-Atg14 (Ser29) (D4B8M) Rabbit mAb (upper), Atg14 (D1A1N) Rabbit mAb #96752 (middle), and β-Actin (D6A8) Rabbit mAb #8457 (lower).

To Purchase # 69501S
Product # Size Price
69501S
1 Kit N/A

Product Includes Quantity Reactivity MW(kDa) Isotype
Phospho-Atg14 (Ser29) (D4B8M) Rabbit mAb 92340 100 µl H M R 65 Rabbit IgG
Atg14 (D1A1N) Rabbit mAb 96752 100 µl H M R 65 Rabbit IgG

Product Description

PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

Background

Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but is also associated with a number of physiological processes including development, differentiation, neurodegeneration, infection and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and is directed by a number of autophagy-related (Atg) genes. These proteins are involved in the formation of autophagosomes, cytoplasmic vacuoles that are delivered to lysosomes for degradation. The class III type phosphoinositide 3-kinase (PI3K) Vps34 regulates vacuolar trafficking and autophagy (4,5). Multiple proteins associate with Vps34, including p105/Vps15, Beclin-1, UVRAG, Atg14, and Rubicon, to determine Vps34 function (6-12). Atg14 and Rubicon were identified based on their ability to bind to Beclin-1 and participate in unique complexes with opposing functions (9-12). Rubicon, which localizes to the endosome and lysosome, inhibits Vps34 lipid kinase activity; knockdown of Rubicon enhances autophagy and endocytic trafficking (11,12). In contrast, Atg14 localizes to autophagosomes, isolation membranes and ER, and can enhance Vps34 activity. Knockdown of Atg14 inhibits starvation-induced autophagy (11,12).

The serine/threonine kinase ULK1 phosphorylates Atg14 at Ser29 to promote autophagosome formation (13).

  1. Reggiori, F. and Klionsky, D.J. (2002) Eukaryot Cell 1, 11-21.
  2. Codogno, P. and Meijer, A.J. (2005) Cell Death Differ 12 Suppl 2, 1509-18.
  3. Levine, B. and Yuan, J. (2005) J Clin Invest 115, 2679-88.
  4. Corvera, S. (2001) Traffic 2, 859-66.
  5. Yan, Y. and Backer, J.M. (2007) Biochem Soc Trans 35, 239-41.
  6. Stack, J.H. et al. (1995) J Cell Biol 129, 321-34.
  7. Zeng, X. et al. (2006) J Cell Sci 119, 259-70.
  8. Liang, C. et al. (2006) Nat Cell Biol 8, 688-99.
  9. Itakura, E. et al. (2008) Mol Biol Cell 19, 5360-72.
  10. Sun, Q. et al. (2008) Proc Natl Acad Sci U S A 105, 19211-6.
  11. Zhong, Y. et al. (2009) Nat Cell Biol 11, 468-76.
  12. Matsunaga, K. et al. (2009) Nat Cell Biol 11, 385-96.
  13. Park, J.M. et al. (2016) Autophagy 12, 547-64.

Pathways & Proteins

Explore pathways + proteins related to this product.

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
PhosphoPlus is a trademark of Cell Signaling Technology, Inc.

Powered By OneLink